| 产品参数 | |
|---|---|
| 产品价格 | 19.9/次 |
| 发货期限 | 1 |
| 供货总量 | 8899 |
| 运费说明 | 电议 |
| 小起订 | 1 |
| 质量等级 | A |
| 是否厂家 | 是 |
| 可售卖地 | 全国 |
| 范围 | 日化品成分分析报价供应范围覆盖贵州省、贵阳市、遵义市、安顺市、铜仁市、六盘水市、毕节市、黔西南市、黔南市、黔东南市 红花岗区、汇川区、桐梓县、绥阳县、正安县、凤冈县、湄潭县、余庆县、习水县、赤水市、仁怀市等区域。 |

采购遵义成分分析,成分分析机构,成分分析检测,化学成分分析,化工成分分析,配方分析,化学材料分析,定性定量分析,成分分析,日化品成分分析_认准<遵义>成分分析科技有限公司_厂家直销_直接让利20%,错过此次机会在等一年。



遵义成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,用于将高维数据转换为低维表示,同时保留数据的主要信息。它通过线性变换将原始数据投影到一个新的坐标系中,使得投影后的数据具有 的方差。这些新的坐标轴被称为主成分,它们是原始数据的线性组合。 成分分析的步骤如下: 标准化数据:将原始数据进行标准化处理,使得每个特征的均值为0,方差为1。 计算协方差矩阵:计算标准化后的数据的协方差矩阵。 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。 选择主成分:根据特征值的大小,选择前k个特征值对应的特征向量作为主成分。 数据投影:将原始数据投影到选定的主成分上,得到降维后的数据。 成分分析可以用于数据降维、遵义同城特征提取和数据可视化等任务。它可以帮助我们理解数据的结构和关系,减少数据的维度,提高模型的效果和计算效率。